Sensor devices for smart and wearable electronics

Nae-Eung Lee

School of Advanced Materials Sci. & Eng. SAINT SKKU Advanced Institute of Nanotechnology SAIHST Samsung Advanced Institute for Health Sciences and Technology Sungkyunkwan University (SKKU) Korea

IOT in smart healthcare

IOT-enabled sensor systems which can monitor physiological and clinical parameters are promising for smart healthcare.

IOT-enabled sensor systems for smart healthcare

Smartphone-integrated

implantable

Mobile point-of-care testing (mPOCT) systems

Portable PoCTs: limits in connectivity and personalization

CELLMIC

mPOCTs: advantage in connectivity (spatiotemporal mapping, epidemic demography, preventive healthcare) but limit of low accuracy and no standardization

Fluorescence imaging-based high accuracy bioassay for mPOCT

Fluorescence spectrophotometer

Hamamtsu

Smartphone

CMOS Image Sensor (CIS)

Rough exposure time control / low SNR

Issue : Low Accuracy False-negatives/ False-positives J

specificity & selectivity ↑

Fluorescence imaging-based 'seesawed' highaccuracy detection of biomolecules

Smartphone imaging-based fluorescence detection for high accuracy bioassays

False-negatives \downarrow

W. Lee et al., Biosensors and Bioelectronics, 94(2017), 643

Smartphone imaging-based fluorescence detection for high accuracy bioassays

Fluorescence imaging-based on-the-spot detection system for food safety

IOT-enabled system

Why skin-attachable sensor patches?

Accessary : non-invasive but limit in unobtrusive monitoring

Patch: non-invasive and unobtrusive monitoring, high SNR due to conformal contact with skin

Biostamp MC10

S-patch Samsung

What can be measured by skin-attachable sensor patches?

Flexible sensors for skin-attachable patches by our group

Stretchable sensors for skin-attachable patches

Materials	Stretchable sensing materials, electrochemical electrodes, dry biopotential electrodes					
Device	Stretchable sensors, energy harvesters, energy storage devices					
Packaging	Substrate, dry adhesives, interconnect, encapsulation					
Stretchable materials & devices						
Substrate	Encapsulation					
Biosensor	Ion sensor Physical sensor					
Dry adhes	ive Ion selective membrane					

Sensor-integrated systems

Integration	Sensor array, integration of sensors, power, and MCU			
S/W	Signal processing, data transmission, apps, big data			
Clinical	New applications, clinical evaluation, service			

Stretchable physical sensors for skin-attachable patches

Approaches for stretchability

Materials	Strategies	Designs		Process methods	Stretchable direction
Intrinsically stretchable components	Using intrinsically stretchable materials	PU-PEDOT:PSS(bottom)	Elastomeric nanocomposites	Spin-coating, printing, spraying	Omni-direction
Geometric engineering of flexible materials	In-plane, geometric engineering	- SSS	Serpentine routing	Patterning Appl. Phys. Lett. 2014, 104, 021908	Uniaxial
	Out-of-plane, geometric engineering		Wavy structure	Pre-stretching and release J. Vac. Sci. Technol. A 2009, 27, L9	Uniaxial, Biaxial
			Island-bridge	Transfer printing IEEE Trans. Compon. Packag. Manuf. Technol. 2015, PP, 1	Biaxial
			Imperceptible	Transfer on pre-strained ultrathin substrate Adv. Mater. 2015 , 27, 34	Unixial
	Out-of-plane, 3D structuring		Bio-mimicking	Soft lithography Adv. Sci. 2015, 2, n/a	Multi-direction, but not fully stretchable
		00000	Microstructrured pattern	Soft lithography spin coating, printing, spraying	Omni-direction

Approach 1: Intrinsically stretchable elastomeric nanocomposites

Nanomaterials

piezoelectric pyroelectric piezoresitive chemresistive thermoresistive photoresponsive electroactive

Stretchable

Elastomer

Transparent

Stretchable, transparent and ultrasensitive strain sensor for emotion detection

Transmittance(%)

Stretchable, transparent and ultrasensitive strain sensor for emotion detection

Stretchable, transparent, ultrasensitive, self-powered strain sensor for activity monitoring

Stretchable, transparent, ultrasensitive, self-powered strain sensor for activity monitoring

PEDOT:PSS-PU electrode

Simultaneous monitoring skin temperature and muscle movement during drinking hot water

Simultaneous monitoring skin temperature and muscle movement during workout

Stretchable transparent humidity sensor for hydration monitoring

Stretchable transparent humidity sensor for hydration monitoring

Response to humidity of human breath

Approach 2: Mogul-patterned elastomeric substrate

An omnidirectionally stretchable substrate for structural engineering

H.B. Lee et al., Adv. Mater., 28 (2016) 3086

Approach 2: Mogul-patterned elastomeric substrate

H.B. Lee et al., Adv. Mater., 28 (2016) 3086

Omniaxially stretchable RGO gas sensor on mogul-patterned elastomeric substrate

Stability of Au electrode (70nm)

Omniaxially stretchable RGO gas sensor on mogul-patterned elastomeric substrate

NO₂ sesning

Under stretched condition

Omaniaxially stretchable piezoresistive pressure sensor on mogul-patterned substrate

Device Structure

Mogul-patterned PEDOT:PSS-**SWCNTs**

Ag paste

Pressure responsivity

Stability under stretching

Materials stability under stretching

Device stability under stretching

Under 30% stretching state

Unstretched state

 \checkmark

Roh et al., Adv. Mater., in press.

Omniaxially stretchable piezoresistive pressure sensor on mogul-patterned substrate

Demonstration : Tremor detection

Resistance change,

✓ Skin area

✓ Demonstration setup

- Vibration detection using

 F
 the device
 - FFT (fast Fourier transform)

Vibration detection using the accelerometer in smartphone

Omniaxially stretchable self-powered piezoelectric device

Piezoelectric Layer

S. Siddiqui et al., Adv. Energy. Mater. In press

Omniaxially stretchable self-powered piezoelectric device

Perspectives

- Efforts toward the improvement of stability and reliability of the sensing nano-materials are required for real applications.
- Sensor-integrated systems by combining MCU, communication, energy and sample handling devices need to be developed by considering the specific service needs.
- Collaborative research is essential for success.

Acknowledgments

• Group members :

Dr. Tien Thanh Ngyuen, Dr. Tran Quang Trung, Dr. Sajal Shrivastava, Dr. Le Thai Duy, Do II Kim, II-Young Sohn, Bo-Yeong Kim, Byung-Ung Hwang, Dang Vinh Quang, Young-Min Son, Eun Roh, Nguyen Minh Triet, Muhammad Saqib, Jin-Soo Kim, Han-Byeol Lee, Se-Chan Kim, Kyu-Hyun Choi, Won-il Lee, Ari Kim, Ju-Hyun Kim

•Sponsors :

National Research Foundation of Korea (NCRC, WCU, Basic Science Research programs), Samsung Advanced Institute of Technology (SAIT)

Thank you very much.

